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Abstract—Electrical vagus nerve stimulation is a treatment al-
ternative for many epileptic and depressed patients whose symp-
toms are not well managed with pharmaceutical therapy. How-
ever, the fixed stimulus, open loop dosing mechanism limits its ef-
ficacy and precludes major advances in the quality of therapy. A
real-time, responsive form of vagus nerve stimulation is needed to
control nerve activation according to therapeutic need. This per-
sonalized approach to therapy will improve efficacy and reduce the
number and severity of side effects.We present autonomous neural
control, a responsive, biofeedback-driven approach that uses the
degree of measured nerve activation to control stimulus delivery.
We demonstrate autonomous neural control in rats, showing that
it rapidly learns how to most efficiently activate any desired pro-
portion of vagal A, B, and/or C fibers over time. This system will
maximize efficacy by minimizing patient response variability and
by minimizing therapeutic failures resulting from longitudinal de-
creases in nerve activation with increasing durations of treatment.
The value of autonomous neural control equally applies to other
applications of electrical nerve stimulation.
Index Terms—Biofeedback, electrical stimulation, neural con-

trol, neuroprosthesis.

I. INTRODUCTION

V AGUS nerve stimulation (VNS) is a treatment alterna-
tive for many epileptic and depressed patients whose

symptoms are not well managed with pharmaceutical therapy.
Approximately two-weeks after device implantation, a physi-
cian programs the pacemaker-like device to deliver intermittent
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pulses of current to the left cervical vagus nerve. The highest
efficacy is typically observed after one year, but only after
several minimally informed stimulus parameter adjustments
[1], [2]. The efficacy of these treatments is far from optimal.
Over the course of weeks to months, a physician systemati-

cally tunes the stimulus until the patient and physician feel that
the therapy is working with no adverse or intolerable side ef-
fects. If a bothersome side effect is encountered, the intensity of
stimulation is decreased until the side effect disappears. These
parameters are maintained until the next appointment [1], [2].
Major limitations beyond the subjective nature of this approach
include 1) the risk of adaption or desensitization to the stimulus,
which may make the therapy less effective over time (e.g., stim-
ulus induced depression of neuronal excitability, or SIDNE [3]),
2) the lack of feedback regarding the type and number of neu-
rons that are activated when the therapy is effective, and 3) the
risk of patient discomfort [1].
All electrical nerve stimulation (ENS) therapies use some

form of a stimulus parameter-based dosing system. This is prob-
lematic, as stimulus parameters are poor predictors of thera-
peutic efficacy; each patient and nerve responds uniquely to
the same strength of stimulation, and the relationship between
stimulation and the degree of nerve activation changes over
time. These factors limit treatment benefit and contribute to
poorer efficacy on a shorter timescale [2]. They also help to
explain why the therapeutic mechanisms are not well under-
stood despite decades of investigation [1]. An objective, in-
formed dosing system is required to improve the efficacy of
ENS therapies and to further reduce the number and severity
of side effects.
We present autonomous neural control (ANC), a nerve ac-

tivation control system designed to eliminate patient response
variability and the detrimental effects of the foreign-body
response at the device–tissue interface. In rats, ANC rapidly
learns how to most efficiently activate any proportion of vagal
A, B, and/or C fibers over time. It provides a new dosing
mechanism based on neural activation. In real time, ANC
systematically decodes evoked compound nerve action po-
tential (CNAP) responses to construct a patient-specific nerve
activation profile (NAP), which describes how each neuron
population in the nerve will respond to any strength of stim-
ulation. Over the course of ENS therapy, ANC continuously
refines the NAP to improve its prediction accuracy and adapt
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Fig. 1. Summary and applications of ANC. ANC enables rapid, consistent control over the biological conduits of therapy. Using features from the CNAP, ANC
rapidly constructs a NAP to predict how one or more neuron populations in a nerve will respond to any rectangular, constant-current stimulus pulse. The NAP
enables dial based-control over the biology, simplifying device optimization and standardizing therapeutic, investigational and data reporting methods.

to circadian, drug-induced, or immune-mediated changes at the
device–tissue interface (Fig. 1) [4].
ANC refines the electrical stimulus, within safe limits

[3], [5]–[7], to selectively control nerve activation on a pa-
tient-to-patient, nerve-to-nerve and neuron-to-neuron basis. By
providing consistent nerve activation, ANC allows reproducible
experiments to systematically delineate the therapeutic mech-
anisms of VNS or other form of ENS therapy. Furthermore,
biological markers of treatment response may be measured and
classified with respect to the NAP, simplifying the development
of fully personalized, closed-loop control systems for treating
diverse neurological diseases.
For physicians, ANC will 1) establish an objective, standard-

ized dosing system based on the level of nerve/neuron activation
or inhibition, expressed as a percent of maximal nerve/neuron
activation, 2) eliminate the complicated, time-consuming stim-
ulus parameter tuning process, 3) provide a simple mechanism
to adjust the relative ratios of A, B, and C fiber activation, and
4) ensure that therapeutic nerve/neuron activation is maintained
over time. For patients, ANC will 1) improve efficacy and en-
hance the overall quality of ENS therapy, 2) reduce the number
of doctor visits, and 3) help extend device lifetime by reducing
energy waste from excessive stimulation.

II. METHODS

A. Surgical Methods

All surgical and animal handling procedures are approved by
the Institutional Animal Care and Use Committee (IACUC) and
adhere to guidelines set forth in the Guide for the Care and
Use of Laboratory Animals [8]. All rats are housed in a 12-h
light/dark cycle at constant humidity and temperature. The sur-
gical suite and instruments are sterilized prior to each procedure.
Isoflurane gas anesthesia is used for the duration of surgery; it is
set to the lowest level that will maintain a stable anesthetic plane
(0.5%–3% isoflurane in 2 L/min O ). Following induction, the
rat is placed in a supine position, the surgical site is shaved and
cleaned with alternating scrubs of betadine and 70% ethanol,
and an analgesic is provided (butorphanol tartrate; 0.5–2 mg/kg,
SC). A small support is placed below the neck for stability.
Throughout the procedure, subcutaneous fluids are provided as
needed to prevent dehydration.
Once the surgical site is clean, a 1.5–2 cm long midline inci-

sion is made from the jaw line to manubrium. A blunt dissec-
tion technique is used for the remaining steps of the procedure.
With a pair of curved, blunt-tipped scissors, we tunnel through
the subcutaneous tissues until the sternohyoid, omohyoid, and
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Fig. 2. Summary of the cathode-first, alternating-monophasic stimulation method used by ANC [9]. ANC suppresses stimulus artifacts via a symmetric stimulation
method in which the cathodal and anodal phases of stimulation have an identical shape and opposite polarity. In most cases, nerve fibers are only activated in
response to the cathodal pulse (the inset overlays the stimulus waveform in red). ANC clusters each cathodal and anodal response to a train of biphasic stimuli
(A), clusters the cathodal and anodal response waveforms (B), computes the artifact-free responses to each period of stimulation by summing the cathodal and
anodal responses within a period of stimulation (C), computes the mean cathodal and anodal response waveforms (D), and sums the resulting waveforms to yield
the mean CNAP response (E). The 95% confidence interval is shown in red in (E).

sternocleidomastoid muscles are visible. The connective tissue
between the left sternocleidomastoid and the sternohyoid/omo-
hyoid is carefully separated until the carotid sheath is visible.
Using a small pair of surgical retractors to hold the muscles
apart, the vagus nerve and carotid artery are dissected from the
carotid sheath. After isolating a 1.0–1.5 cm segment of the cer-
vical vagus nerve, the epineurium is carefully pierced with iris
scissors and retracted with fine forceps.
Two custom-made silicone cuff electrodes are wrapped

around the nerve; care is taken to ensure circumferential or
near-circumferential contact with the nerve (Electrode spacing

mm; Electrode surface area mm ). The stimulation
leads are connected to the output of an A-M Systems Model
2200 Analog Stimulus Isolator. The recording leads are con-
nected to the inputs of a Grass Model P511 High Performance
AC Preamplifier. The stimulation leads are connected such
that the cathode (-) is closest to the non-inverting recording
electrodes. A data acquisition board (National Instruments

USB-6353 X Series) is used to interface with a computer
running ANC in MATLAB R2010a.

B. Stimulus Artifact Suppression
A limited CNAP conduction distance is available along the

left cervical vagus nerve of rodents (e.g., –15 mm of ex-
posed nerve in a 280–300 g rat). As a result, CNAP response
peaks often coincide with the stimulus artifact, necessitating
the use of an artifact suppression method [9]. To the best of
our knowledge, we are the first to demonstrate effective and
reliable stimulus artifact suppression using cathode-first, alter-
nating monophasic stimulation in the peripheral nervous system
at conduction distances less than 1 cm.
Fig. 2 summarizes the method of CNAP extrac-

tion and averaging using the measured response to
a 1-s train of cathode-first, alternating monophasic
stimulation ( stimulus pulse amplitude
mA; stimulus pulse width ms;
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Fig. 3. CNAP classification system built into ANC. (A) Mean CNAP response
from the left cervical vagus nerve of rat. Shaded regions in (A) correspond to
a conduction velocity range in (B), which enables nerve fiber classification ac-
cording to the Letter System [15]. (B) Mean CNAP response from (A) plotted
as a function of conduction velocity, in m/s (Conduction Distance

mm).

pulse repetition frequency Hz;
stimulus train duration s; sampling frequency
kHz; pass-band to 10 kHz). The raw cathodal
and anodal stimulus artifacts are shown in black and grey,
respectively. To remove any DC offset, the average of the raw
response waveform is subtracted from the recording. Then,
ANC segments the raw response waveform into periods
of responses . Each period of the
response waveform is then further segmented and grouped
into clusters of cathodal and anodal response waveforms,
respectively [Fig. 2(B)]. The cathodal and anodal stimulus
artifacts are symmetric in the recordings due to the symmetry
of the anodal and cathodal phases of stimulation and the natural
orientation of the recording electrodes along equipotential lines
of the electric field radiating from the stimulating electrodes.
The sum of each anodal and cathodal response waveform yields
a cluster of artifact-free vagal nerve responses to stimulation
[Fig. 2(C)]. The mean CNAP response waveform [Fig. 2(E)] is
the averaged cluster of CNAP responses in Fig. 2(C) and the
sum of the mean cathodal and anodal response waveforms in
Fig. 2(D). A Shapiro-Wilk test for normality gives no evidence
that the artifact-free stimulus responses are not normally
distributed ( when stimulating at 20 Hz
for 1 s). Therefore, a response at any point in the signal is
significantly different from 0 V (at ) if the mean
response and 95% CI do not cross the abscissa.

C. Nerve Response Classification

ANC deconstructs the stimulus-evoked CNAP, recorded at a
fixed distance from the stimulating cathode, to estimate the level
and type of nerve fiber activation. Conduction velocity is used
to identify distinct nerve fiber groups (i.e., neuron populations),
referred to as A (fast, myelinated fibers), B (slow, myelinated
fibers), or C (slow, unmyelinated fibers) [10], [11]. Fig. 3 de-
scribes this Letter System using data collected from the left cer-
vical vagus nerve of a female Long-Evans rat. When recording
at a fixed, known distance from the stimulating cathode, the
CNAP response waveform peaks separate in time due to the

differing conduction velocities of A, B, and C fibers. The max-
imal CNAP response, otherwise referred to as maximal acti-
vation, is the CNAP response magnitude at which an increase
in stimulus intensity does not produce an increase in response.
By individually deriving stimulus-response relationships for A,
B, and C fibers, the effect of any stimulus pulse on nerve ac-
tivity is directly measurable. Before ANC, however, this infor-
mation has not been readily available or exploited in therapeutic
applications.

D. Stimulus-Response Measurement and Classification

ANC measures a series of stimulus-response relationships to
construct an empirical model that describes how each fiber type
in any nerve of any patient will respond to any strength of elec-
trical stimulation. This model, known as a nerve activation pro-
file, describes the sensitivity and dynamic range of each fiber
type that can be identified in a CNAP. It can be constructed in
under a minute. ANC continuously updates the NAP to improve
its prediction accuracy over time and adapt to the variety of fac-
tors that influence the efficacy of stimulation (e.g., circadian
effects, changes in the electrode–tissue interface over time, or
fiber desensitization to stimulation). By controlling nerve acti-
vation through dynamic adjustments to stimulus charge, accom-
plished through NAP-guided changes in stimulus pulse ampli-
tude or width, ANC enables ENS with a constant nerve activa-
tion effect in each patient. This enables much more consistent
therapy.
The sensitivity of each fiber group to ENS is evaluated

using stimulus-response data collected at and
0.1 ms. If necessary, the operator may define all stimulus and
recording parameters (default parameters: stimulus type =
constant current; stimulus waveform = cathode-first, alternating
monophasic stimulation; Hz; s;
kHz; pass-band to 10 kHz). Starting with
ms, ANC incrementally increases the stimulus amplitude,
stimulates the nerve, and records that resulting CNAP response.
Between trials, the mean CNAP response is computed, the
peak fiber responses are located and classified, and the data are
stored in local memory. Following Trial 1, the response mag-
nitude from the target fiber group is always compared to that
from the previous trial. When stimulus intensity is increased
and the target fiber response magnitude no longer increases
(i.e., if a fiber group is maximally activated), ANC stores the
stimulus parameters and responses from the previous trial.
Next, ANC decreases the stimulus amplitude according to (1)
until parameters that yield a predefined percentage of maximal
activation are located (e.g., 25% maximal activation, defined
as a target fiber response having a magnitude that is 25% of its
maximal response magnitude). The same process is repeated
using and 0.1 ms, respectively. An error tolerance of
5% is initially used to classify all fiber response magnitudes to
account for the effects of noise

(1)

In (1), is the stimulus charge per phase from the most
recent trial (in C/Ph), is the target fiber response voltage (in
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Fig. 4. Rapid C fiber accommodation to constant stimulation. (A) A constant stimulus charge of 100 nC/Ph was applied at 20 Hz for 30 s. The insets show the
pulse duration and amplitude of each stimulus ( mA; ms). (B) Measured , B and C peak response latencies relative to stimulus onset
(ms). (C) Measured , B and C fiber peak response amplitudes relative to baseline ( V). (D) Clustered stimulus response data from B-C. Amplitude and latency
values associated with the second deflection of the diphasic fiber responses are also plotted in grey. (E) A color map representation of all stimulus response data
shown in A–C ( CNAP responses). Stimulus onset occurs at the intersection of the Stimulus # and axes. Note the significant increase in
C peak latency and decrease in response voltage as Stimulus # increases. (F) Fiber peak voltage as a function of stimulus number. fibers become slightly more
excitable, as inferred from a general increase in the peak amplitude over the 600 stimuli. B and C fibers show significantly less activation as stimulus number
increases.

V), is the fiber response voltage from the most re-
cent trial, and is a scaling factor that modulates the magni-
tude of the stimulus intensity adjustment (e.g., when is greater
than unity, it reduces the intensity of the stimulus charge ad-
justment; when is less than unity, it amplifies the intensity of
the stimulus charge adjustment). The new stimulus pulse am-
plitude is calculated by dividing the new stimulus charge per
phase, , by the pulse duration used in the preceding trial (i.e.,

).

III. RESULTS

A. Rapid Loss of C-Fiber Activation With Constant Stimulation
Fig. 4 shows an example of how a nerve adapts to a constant

electrical stimulus in a relatively short time ( mA;
ms; Hz; s). Suppl. Fig. 1

shows another example of activation loss using less charge
per phase. In both cases, the , B and C fiber CNAP responses
rapidly evolve over 30 s of constant current stimulation [see
especially Fig. 4(E) and (F)].
Linear regression was performed in STATA 12 to test for

a statistically significant order effect, a characteristic feature
of SIDNE [3]. A regression model slope coefficient that is
significantly different from 0 suggests a relationship/change
among the CNAP features of interest (i.e., , or )

and stimulus number (i.e., the sequential number assigned to
each cathodal stimulus pulse within the 30-s train of stimuli
delivered at 20 Hz). Significance tests of the slope coeffi-
cients suggest that, with an increasing number of stimuli,
fiber excitability increases - and C fiber
excitability decreases - . A change in
stimulus-driven nerve activation suggests an analogous change
in output to tissues innervated by the nerve.

B. Autonomous Stimulus-Response Measurement and
Classification
Fig. 5 summarizes a set of stimulus-response data that ANC

collected from C fibers in the left cervical vagus nerve of the
same rat whose data is represented in Fig. 4 and Supplementary
Fig. 1 ( Hz; s;
mm; trials CNAP responses trial
CNAP responses). Fig. 5(A)–(C) show all 1320 , B, and C
fiber CNAP response latencies and voltages (
responses per stimulus parameter combination;
unique parameter combinations). Although and B fiber stim-
ulus-response data is collected, all stimulus intensity adjust-
ments are based on the magnitude of the mean C fiber response
in relation to the maximal response voltage. In Fig. 5(D), data
from Fig. 5(A)–(C) is clustered by response voltage and la-
tency. Local minima from each fiber group are also plotted to
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Fig. 5. Autonomously collected stimulus-response data from the left cervical vagus nerve of a female Long-Evans rat. (A) Stimulus charge per phase, in nC/Ph,
for the entire vagal C-fiber activation profile-mapping period (ANC constructs a unique activation profile for each stimulated nerve and neuron type; the activation
profile serves as a guide when maintaining or adjusting nerve activation for an experimental or therapeutic purpose). The insets show the pulse duration and
amplitude of each stimulus. (B) Measured , B and C peak response latencies relative to stimulus onset (ms). Latency increases with decreasing stimulus intensity
for and C fibers, but not for B fibers. (C) Measured , B and C fiber peak response amplitudes relative to baseline ( V). (D) Clustered stimulus response
data from B–C. Amplitude and latency values associated with the second deflection of the diphasic fiber responses are also plotted in grey. (E) A color map
representation of all stimulus response data shown in A–C ( trials 20 CNAP CNAP responses). Stimulus onset occurs
at the intersection of the Stimulus # and axes. (F) Mean CNAP response computed from data collected during each trial of stimulation (
CNAP responses/trial). Stimulus onset is at the intersection of the and axes.

demonstrate that other features of the CNAP response, such as
peak-to-peak voltage and area, can be measured and used by
ANC. A color map of all 1320 CNAP responses is shown in
Fig. 5(E) (voltage is represented as a color according to the scale
to the right of the figure). Finally, the mean CNAP responses are
plotted by trial in Fig. 5(F). Mean peak latencies are computed
from the latencies of each individual stimulus response shown
in Fig. 5(A)–(E).
Suppl. Figs. 2 and 3 summarize data sets collected from

and B fibers in the same nerve of the same subject (Suppl. Figs. 4
and 5 show data sets collected for C fibers in the same nerve of
the same subject using a PRF of 2 and 1 Hz, respectively). Note
how the mean C fiber response magnitude varies with in
Fig. 5, whereas the mean and B fiber response magnitudes
vary with in Suppl. Figs. 2 to 3, respectively. The prefer-
ential modulation of , B, or C fiber groups implies that the
activation level of any fiber group in the nerve can be selec-
tively controlled if the appropriate set of stimulus parameters
are known.

C. The Slope-Activation Relationship
ANC rapidly identifies the parameter space for each fiber

group in a nerve in the form of an activation profile. An acti-
vation profile is autonomously constructed for each fiber type
using measured stimulus-response data and a newly discov-

ered mathematical formula that relates threshold current (i.e.,
rheobase current) to fiber activation level. A set of activation
profiles for each fiber group in a nerve constitutes a nerve
activation profile.
The key to constructing a NAP is in a newly discovered,

predictable relationship between the rheobase current, , and
its corresponding fiber activation level, is the slope of
a charge-duration (CD) line described by the Weiss equation).
When all possible CD lines are constructed from a set of
stimulus-response data, each will represent a unique activation
level, . If the slope of each line (i.e., ) is plotted against
its corresponding activation level, , an exponential slope-ac-
tivation relationship is observed. It is unique to each subject,
nerve and neuron type, and allows ANC to adapt to changes
at the device–tissue interface over the course of an experiment
or therapy. To our knowledge, this is the first discovery and
documentation of the relationship.
To derive the slope-activation relationship for vagal ,

B and C fibers, ANC first sorts the stimulus-response data in
ascending order by the evoked response voltage. Each fiber
response voltage is then normalized with respect to the maximal
recorded response voltage and converted to a percentage of
maximal activation. The largest observed response voltage rep-
resents maximal activation. All associated stimulus parameters
are stored along with the measured nerve responses.
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Fig. 6. Slope-activation data for A (left), B (middle) and C fibers (right) for a single animal. For each fiber group, the rheobase current, , is plotted against its
corresponding level of maximal activation, . Data shows an exponential increase in rheobase current for a linear increase in percent maximal activation. Best-fit
curves are calculated for each fiber type through a least-squares linear regression of the natural logarithm-transformed slope-activation data. The coefficients
and of the slope-activation equation are placed in the generalized form of the Weiss equation, producing a single equation that predicts how the target fiber type
will respond to any strength of stimulation. Goodness-of-fit is best for fibers , followed by C and B fibers ( and 0.35, respectively).
A poor fit is most closely associated with a poor signal-to-noise ratio.

Next, ANC clusters the evoked fiber responses and associ-
ated stimulus parameters by activation level (a 5% error toler-
ance is used by default). Within each cluster, the data is sorted
by pulse duration (i.e., ). If multiple entries have the same
pulse duration and evoke the same level of activation, they are
replaced with an average of the duplicate entries. ANC then
searches for clusters with at least two pulse durations repre-
sented. Using these data, ANC computes the best-fit CD lines
using least-squares linear regression.
The slope of each computed CD line (i.e., ) is plotted

against the associated percent maximal fiber activation, . To
model the slope-activation relationships, ANC first computes
the natural logarithm of each slope. Then, the best linear fit
to the natural logarithm-transformed data is computed using
least-squares linear regression. The resulting equation has the
form , where is the per-
cent maximal activation, is the predicted slope of the CD line
for 0% maximal activation, and is a constant that determines
the rate at which the slope of a CD line increases as activation
level increases. In linear form, the slope-activation equation is

. If and ,
then , where is the slope, is the y-inter-
cept (i.e., the threshold current for 0% maximal activation), and
is the percent maximal activation. This can be used in place

of within the Weiss equation. In doing so, an equation that
can be used to predict how a target fiber group will respond to
any strength of ENS is created (2). TheWeiss equation is shown
above (2) for reference

(2)

Fig. 6 shows the slope-activation data along with the associ-
ated equations and goodness-of-fit metrics for vagal , B and

C fibers (derived using stimulus response data from Fig. 5 and
Suppl. Figs. 2 and 3). The slope-activation data for fibers
is least variable , followed by and
then B fibers . A consistently poor signal-to-noise
ratio is likely to blame for the poor fit to B fiber slope-activa-
tion data. A poor fit to the slope-activation data will translate to
larger predictive errors once the activation maintenancemode of
ANC is initiated. The model will evolve as ANC collects more
data, however. Erroneous or inaccurate values in the slope-acti-
vation relationship are replaced once ANC locates the stimulus
parameters that yield precisely the desired response. A simple
voltage clamp enables ANC to rapidly and precisely locate the
true parameter set that evokes the target response.

D. The Nerve Activation Profile

The activation profile for each fiber type is formed from the
slope-activation equation and an estimate of the SD time con-
stant, . The absolute value of the mean of the x-intercept
values from the CD lines is used as an estimate of . Given
the subject, nerve, and fiber-specific constants , and ,
(2) predicts the population response of any nerve fiber group
to any strength of constant-current stimulation. This unique at-
tribute is especially evident when solved for in

(3)

Fig. 7 graphically depicts the activation profiles that ANC
constructed for vagal , B and C fibers using (2). The acti-
vation profile can be expressed in CD (top row) or SD form
(bottom row). When the activation profile from each fiber group
is overlaid, the NAP is complete. The NAP in Fig. 7 describes
how the left cervical vagus nerve of one particular rat will re-
spond to any strength of electrical stimulation. To aid interpreta-
tion, predicted CD lines (top row) and SD curves (bottom row)
are shown within the parameter space for %
maximal activation. Note the nonlinear increase in slope with
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Fig. 7. Activation profile for A (left), B (middle-left) and C (middle-right) fibers with predicted CD lines (top row) and SD curves (bottom row) for 0%–100%
maximal activation, in 10% increments. The right column shows the NAP, which predicts how all , B and C fibers in the nerve will respond to any strength of
stimulation.

a linear increase in percent maximal activation, a property de-
scribed by the coefficient in the slope-activation equation.

IV. DISCUSSION

ENS therapy holds the potential to modulate or control the
function of almost every tissue in the body. Control is estab-
lished by artificially modulating the firing activity of existing
neural pathways with patterned electrical impulses from an
implantable or external device. To maximize control over the
quality of the therapy, the correct strength and pattern of ENS
must be applied to selectively activate and control one or more
specific neural pathways to deliver a therapeutic message to
target tissues, organs, or systems, whose state is measured
in the form of a biomarker response. Establishing control is
problematic, as the degree of neural activation in response to
a given dose of stimulus varies greatly from patient to patient
(e.g., due to genetic differences, the tissue/immune response to
the implant, or environmental factors) and changes over time in
individual patients [1], [5], [6]. Although relevant biomarkers
remain to be discovered for many conditions, the degree of
nerve activation is a useful marker that can be beneficially
exploited for the immediate advancement of bioelectronic
therapies [12], therapies that require fine control over neural
pathways for maximal therapeutic benefit.
All existing ENS technology fails to fully account for pa-

tient sensitivity to the electrical stimulus, especially at the
nerve–electrode interface. To titrate the strength of ENS therapy
today, a physician programs the stimulator to deliver a set of
treatment parameters that describe the strength and pattern of
electrical stimulation. Over a period of weeks to months, a

physician slowly adjusts these parameters on a patient-to-pa-
tient basis in an attempt to maximize benefit and limit side
effects [1]. The degree of nerve activation is not monitored
or tracked in relation to therapeutic benefit, however, so the
physician must rely on his/her past experience and patient
reports for guidance. Months of subjectively guided treatment
parameter adjustments can induce variable adverse side effects
and significant patient discomfort [5], [13], [14]. Since the
biological response to stimulation is not measured (neural
activation or other biomarker), the stimulus parameters cannot
be adjusted to maintain a constant degree of neural activation
or therapeutic benefit over time.
ANC is a form of artificial intelligence that adjusts stimulus

parameters in real time so that control is maintained over one or
more neural pathways that mediate the target therapeutic effect
and the off target effects (i.e., side effects). With the closed-
loop, biofeedback-driven control provided by ANC, the degree
of nerve fiber activation, ranging from 0 to 100%, is controlled
in the same manner across patients and within the same patient
over time. ANC serves as a tool to advance our understanding
of the relationships between the degree and pattern of neural
activation and therapeutic efficacy. Moreover, it allows for the
rapid if not immediate deployment of stimulus parameters that
are optimized for each patient, nerve and neuron type. It is a
new alternative to the long, burdensome device tuning system
that is currently in use that can pave the way for a new standard
of care.

V. CONCLUSION
ANC is device agnostic and modular in design, creating op-

portunities to develop additional subsystems that autonomously
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adjust the nerve activation level according to disease or stim-
ulus-driven changes in the health of a patient (e.g., responsive
or adaptive stimulation). Toward this end, ANC can accept a
growing number of biological markers as input. Through col-
laboration, we expect to rapidly expand the capabilities of ANC
and promote its use in the development of next-generation bio-
electronic therapies. Under this paradigm, ANC will operate
in tandem with secondary closed-loop systems, which instruct
ANC when and how to activate select neuron populations in a
nerve based on detected physiological events captured in the
form of a biomarker (e.g., seizure onset). As a tool for un-
raveling the relationships between neural activation, biomarker
changes and therapeutic benefit, ANC will further contribute to
our understanding of treatment-resistant neurological diseases,
their cause, their treatment and their prevention.
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