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Abstract-Construction of a direct brain-machine interface 
@MI) for neuroprosthetic purposes is at the forefront of many 
current neural engineering thrusts. Due to recent break- 
throughs in device technology and implantation techniques, a 
basic framework is now sufficiently developed to allow design 
of systems level interface strategies producing robust, scalable 
BMIs that adapt quickly to optimize information transfer at 
the interface. It has been postulated that knowledge of the 
underlying neural coding is mandatory for further BMI devel- 
opment. In this preliminary report we use an adaptive algo- 
rithm requiring limited knowledge of the underlying neural 
coding to allow na'ive rats implanted with Michigan silicon 
microelectrode arrays in motor cortex to perform a tone dis- 
crimination task via differential modulation of the recorded 
signals. One subject was able to perform the task consistently 
above chance, despite minor daily fluctuations in recording 
populations and signal quality. The brain rapidly changed 
response strategies to facilitate performance of the task, and 
the algorithm subsequently adapted to accommodate improved 
BMI operation. 
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I. INTRODUCTION 

The construction and characterization of a chronic 
brain-machine interface (BMI) is one of the principal chal- 
lenges in modem neural engineering. Indirect BMIs using 
brain-derived signals acquired non-invasively through EEG 
techniques have produced benchmark information transfer 
rates of 10-25 bits/min [l]. However, due to the spatial and 
temporal signal degradation produced by the meninges, cra- 
nium and scalp, indirect BMIs will possess reduced infor- 
mation transfer rates compared to their direct BMI contem- 
poraries. Direct BMIs interface with the neuronal elements 
in the brain using signals from single neurons or small 
groups of neurons. Consequently, the signals possess a 
much greater potential information transfer rate than 
through EEG recording. Though, previously limited by 
technological constraints, recent advances in devices and 
techniques have rendered direct BMIs a viable choice for a 
BMI system designer. 

Optimal engineering of a BMI system involves consid- 
eration of the brain as a dynamic, adaptive controller. 
Therefore, BMI systems providing adequate feedback in- 
formation to the brain will be the most successful. Several 
classical reports emphasize the idea of closed-loop feedback 
to the brain [2, 31, and a recently renewed interest in the 
field has provided additional demonstrations of closed-loop 

feedback improving direct BMI performance [4-81. The 
power and time-scale of the brain's adaptation in these ex- 
amples is remarkable. Some investigators have suggested 
that a primary focus for BMI development should be in un- 
derstanding the neural coding principles employed by the 
interfaced neural tissue [9] ;  however, this point-of-view 
may underestimate the brain as a controller. Additionally, it 
may prove counter-productive under circumstances where 
the interfaced neurons are not involved in the operant task. 
If the brain does adapt as dynamically as the above reports 
suggest, quantifying the neural coding in an open-loop set- 
ting may be pointless, since the coding strategies will 
change in the closed-loop case. 

Here we report preliminary results from a BMI system 
in the rat motor cortex. The subject is required to perform 
an auditory discrimination task, responding via neuronal 
action potentials recorded on a chronically implanted 
Michigan silicon microelectrode array. The BMI system is 
robust, adapting to fluctuating signal quality and content in 
time. Additionally, the BMI system is designed to adapt on 
a slow time-scale, so as to not to conflict with the rapidly 
adapting brain. The result is little decrease in subject per- 
formance after perturbation in a signal quality or content. 

11. METHODOLOGY 

A.  Device and Surgical Implantation 

Three male Sprague-Dawley rats (250g - 300g) were 
chronically implanted with Michigan silicon microelectrode 
arrays. Microelectrode array and surgical details are de- 
scribed elsewhere [ 101. Briefly, electrode geometry con- 
sisted of four 50 pm wide thin-film silicon shanks separated 
by 200 pm. Each shank had four sites separated by 200 pm. 
The electrodes were implanted into the forelimb area of the 
rat's primary motor cortex with coordinates of AP: +3.0um, 
ML: 2.5um, as described by Sanes et. a1 [l 11. Upon implan- 
tation the crainiotomy was closed via ALGEL@ and dental 
acrylic (CO-Oral-Ite Dental Mfg. Co.), and the animal was 
allowed 48 hours to recover from surgery. All procedures 
complied with the United States Department of Agriculture 
guidelines for the care and use of laboratory animals and 
were approved by the University of Michigan Animal Care 
and Use Committee. 

B. Behavioral Task 

Initially, the rats were food deprived to 80% of their 
free-feeding weight. They were subsequently trained in a 
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two-choice, gotno-go discrimination task. Subjects re- 
sponded in standard operant conditioning behavioral boxes 
(Med Associates, St. Albans, VT) located within an anech- 
oic chamber. Subjects were positively reinforced for correct 
responses via single food pellets (P.J. Noyes, 45 mg rodent 
diet I, Lancaster, NH) delivered in a 5 cm by 5 cm tray lo- 
cated at the base of one wall of the cage. A 28 V house 
light at the rear of the box was used for cage illumination. 
The behavioral apparatus was controlled and monitored by 
in-house software developed using Matlab (Mathworks, 
Natick, MA), running on a PC interfaced with digital input- 
output hardware (System 111, Tucker-Davis Technologies, 
Gainesville, FL). This equipment was also used to generate 
all auditory stimuli used in the experiment. The auditory 
stimuli were delivered via a speaker (Yamaha NS-IOM Stu- 
dio, Yamaha Corporation, Buena Park, CA) located 1 m 
directly above the test box. The system delivered a near-flat 
frequency response between 500 Hz and 32 kHz. The sys- 
tem was calibrated to a position at the food delivery tray; 
although calibration measurements indicated that the test 
box approximated a free field. 

During each experimental session neural electrophysio- 
logical data from the 16 electrode channels sampled at 40 
kHz were simultaneously amplified and bandpass filtered 
(450 - 5000 Hz) on a Multi-Neuron Acquisition Processor 
(MNAP; Plexon Inc, Denison, TX). Manual neuron sorting 
was conducted prior to each experimental session. Neural 
firing times were uploaded via the intemet to the apparatus- 
controlling Matlab program. 

Each experimental session consisted of 300 trials. Tri- 
als consisted of a 10 second inter-trial interval, a 1 second 
stimulus, and a response window of up to 4.5 seconds. For 
each trial one of two set points was presented. The set 
points were auditory tones of either 1 kHz or 10 kHz at 70 
dB SPL. Neural firing modulation across the microelec- 
trode array was monitored to determine the response to the 
given set point as described below. Based on the response, 
each trial was termed either “correct”, “wrong” or “late”. 
Correct and wrong responses terminated the response win- 
dow, and a correct response was reinforced with a single 
food pellet. Wrong responses were not reinforced. Late 
responses occurred if no response was given within the 4.5 
sec response window; these trials were also not reinforced. 
For each experimental session the correct, wrong, and late 
percentages were calculated. 

In order to determine the neural firing rate modulation, 
a weighted average of the response firing rate relative to a 
baseline firing rate was calculated. The baseline firing rate 
for each microelectrode channel was determined by binning 
the neural data during last 1.8 seconds of the inter-trial in- 
terval into 90 ms bins and calculating an average firing rate 
and standard deviation. The response window data was 
binned into 90 ms bins, and a 450 ms window, sliding in 90 
ms increments, was used to calculate an average response 
firing rate for each channel. The baseline firing rate average 
for each channel was then subtracted 6om the response 

window average. This channel modulation data was multi- 
plied by two sets of channel weights. The weighted modu- 
lation data was then compared channel by channel to an 
adaptive threshold and averaged across each set. The adap- 
tive threshold was based on the baseline firing rate standard 
deviation as described below. The output of the algorithm 
for each 90 ms time step in the response window was two 
numbers representing the neural modulation for each re- 
sponse state. 

In each trial the two response states were tested via two 
unique sets of channel weights corresponding to the two 
possible trial set points. Initially, the channel weights were 
chosen at random. Subsequently, an adaptive algorithm 
calculated the optimal channel weights for each of the set 
points. For a correct answer to the given set point, the ratio 
of the response firing rate to the baseline firing rate was 
calculated and tabulated for that set point’s weights. The 
weights for that set point were then modified based on the 
average criterion-baseline firing ratio of the last 10 correct 
trials for that set point. Each weight converged to the chan- 
nel’s percent modulation for each set point such that: no 
firing rate modulation resulted in a zero weight, increased 
modulation resulted in a positive weight, and a decreased 
modulation resulted in a negative weight. Set point weights 
were carried over from day to day. 

For each sliding increment of the response window an 
adaptive threshold above the baseline firing rate was calcu- 
lated. A response for a trial was established if only one re- 
sponse state exceeded threshold. If both exceeded the 
threshold the response was considered null and the window 
continued sliding. The initial threshold was two standard 
deviations above the baseline firing rate, but on all experi- 
mental days after day 1, the threshold was continuously 
adapted to converge the number of answered (correct or 
wrong) trials to 80% of the total trials (20% late). 

111. RESULTS 

A.  Behavioral Data 
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Fig I .  Daily behavioral results of two tone discrimination using neural 
responses across the microelectrode array from subject BMI-7. For each 
daily session, percent correct, percent wrong and percent late are plotted. 
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One subject was able to discriminate the auditory stim- 
uli above chance via channel responses on the 
microelectrode array. Chance was calculated as 50% of the 
non-late trials, owing to the forced-choice nature of the 
paradigm. Due to the threshold adaptation, chance was 40% 
on experiments conducted after day one. This was also 
determined experimentally via controls involving a naike 
subject and by removing the rewards from the trained 
subject. These controls resulted in 39% and 33% correct 
respectively. 

For each experimental session the percent correct, 
wrong and late were calculated. The results from 12 ses- 
sions of daily experiments are shown for subject BMI-7 in 
Fig 1. The subject was able to discriminate the auditory 
cues above chance after three experimental sessions. A cen- 
tral result is the sharp increase in the discriminability, or the 
ratio of correct to wrong trials, after day 2. Additionally, 
regardless of variability in recording quality or unit selection 
within a session or from session to session, the subject was 
able to maintain a correct response rate above chance from 
day 3 to day 12. 

B. Neuval Recordings 

Data from all 16 electrode channels were examined for 
stimulus-onset modulation. To evaluate the different re- 
sponse states of the subject, peri-stimulus time histograms 
(PSTHs) were constructed for both of the set points. PSTH 
data across four electrode channels for three experimental 
days are shown as Fig. 2. The PSTHs for set point 1 (1 
kHz) modulation are shown in blue and the red curves indi- 
cate the PSTHs for set point 2 (10 kHz). The four channels 
displayed exhibited the most modulation across the 16 
channel electrode array. Therefore, they also converged to 
the highest absolute valued weights in the adaptation algo- 
rithm. 

Interestingly, the brain adopts the same response strat- 
egy from day 8 to day 9, in fact, becoming more “tuned” as 
indicated by the ordinate increases on day 9. Between days 
9 and 10, the channel displaying the most modulation on 
previous days (channel 4) lost the activity that had been 
recorded earlier. Consequently, on day 10, channel 
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4 exhibits little modulation to either set point, and the 
other three channels now exhibit an entirely different re- 
sponse strategy. This strategy was accommodated by the 
adaptive algorithm, and the performance, as shown in Fig. 
2 is only mildly hindered due to the initial leaning curve 
of both the subject and the algorithm. 

IV. DISCUSSION 

An optimal BMI system will putatively be: dynamic, 
robust, scaleable and modular. As BMI system design 
progresses, metrics of the information transfer capability 
from various systems to and from the brain must be ob- 
tained relative to these system properties. In this study 
we begin to investigate some of these properties through 
implementation of a BMI in rat motor cortex, testing the 
information transfer from the brain. 

This BMI provides dynamic, system level, software 
based adaptation that allows rapid optimization of per- 
formance. BMI system adaptation on the order of hours 
to minutes has been shown to be important for subject 
performance of a neural control task. The BMI in this 
experiment was robust to the degree that even with daily 
neuronal population changes, the algorithm-brain system 
allows for performance above chance. Several investiga- 
tors have demonstrated similar degrees of adaptation and 
robustness [4-61. Using a systems-based design approach, 
this system tends to be both scaleable and modular. As 
new tasks or technologies are encountered, individual 
components within the block diagram can be modified or 
replaced. 

A unique property of the presented BMI system is 
that it requires no prior tuning properties knowledge of 
the recorded neurons for adequate system performance. 
For the initial trial, random weights are assigned to each 
channel for each set point. Subsequently, the system 
adapts based on stereotyped responses across the micro- 
electrode array to allow subject responses. This system 
design strategy may prove important in implementation of 
neural prosthetic systems for disabled humans, in which 
neural tuning properties will be unattainable. 

V. CONCLUSION 

Design of a direct BMI system is one of the primary 
challenges in modem neural engineering. A fundamental 
question encountered in BMI system design is the degree 
of "tuning" built into the model. This system provides 
initial evidence that an intra-cortical BMI with limited 
prior knowledge of the neural coding mechanisms of the 
interfaced neural tissue can effectively provide above- 
chance performance in an auditory tone discrimination 
paradigm. The BMI system demonstrated here allows the 
brain to converge to preferred output states, subsequently 
adapting to accommodate these response strategies. 
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